PROGRAMME DE COLLE S30

NB: seules les démonstrations des théorèmes, propositions étoilées ne sont pas exigées.

SÉRIES NUMÉRIQUES =

■ ■ Généralités

Définition: Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$, $n \in \mathbb{N}$. On appelle somme partielle de rang n, et on note U_n , la somme $U_n = \sum_{k=0}^n u_k$.

La suite des sommes partielles $(U_n)_{n\in\mathbb{N}}$ est appelée la série de terme général u_n . On la note $\sum u_n$.

Définition : La série $\sum u_n$ est dite **convergente** si la suite des sommes partielles (U_n) l'est. En ce cas, la limite des sommes partielles est appelée la **somme** de la série : on note

$$\sum_{n=0}^{+\infty} u_n = \lim_{n \to +\infty} U_n = \lim_{n \to +\infty} \sum_{k=0}^{n} u_k$$

Lorsque la suite (U_n) diverge, on dit que la série est **divergente**.

Théorème-Définition*.— Restes d'une série convergente —. Soit $\sum u_n$ une série convergente. Étant donné $p \in \mathbb{N}$ le reste d'ordre p de la série $\sum u_n$ est défini par $R_p = \sum_{n=p+1}^{+\infty} u_n$ de sorte que $\sum_{n=0}^{+\infty} u_n = U_p + R_p$. De plus, la suite $(R_p)_{p \in \mathbb{N}}$ est convergente de limite nulle.

Théorème*.— Soit $\sum u_n$, $\sum v_n$ deux séries numériques et $\lambda \in \mathbf{R}$ un réel.

- Si $\sum u_n$ converge, alors $\sum_{n>n_0} u_n$ converge.
- Si $\sum u_n$ converge, alors $\lambda \sum u_n$ converge et $\sum_{n=0}^{+\infty} (\lambda u_n) = \lambda \sum_{n=0}^{+\infty} u_n$
- Si $\sum u_n$ et $\sum v_n$ convergent, alors la série $\sum (u_n + v_n)$ converge et $\sum_{n=0}^{+\infty} (u_n + v_n) = \sum_{n=0}^{+\infty} u_n + \sum_{n=0}^{+\infty} v_n$
- Si $\sum u_n$ converge et $\sum v_n$ diverge, alors la série $\sum (u_n + v_n)$ diverge.

Théorème.— Condition nécessaire de convergence —. Soit $\sum u_n$ une série numérique.

Si $\sum u_n$ converge alors (u_n) est convergente de limite nulle

Vocabulaire: $lorsque u_n \not\to 0$, on dit que la série $\sum u_n$ diverge grossièrement.

■■■ Séries à termes positifs

Théorème.— Condition nécessaire et suffisante de convergence —. Soit $\sum u_n$ une série à termes positifs. On note (U_n) la suite des sommes partielles. Alors

$$\sum u_n$$
 est convergente $\ si\ et\ seulement\ si\ (U_n)$ est majorée.

Dans ce cas,
$$\sum_{n=0}^{+\infty} u_n = \sup_n U_n$$
.

Lemme.— Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction continue par morceaux, décroissante et positive. Alors pour tout entier naturel $n \in \mathbb{N}^*$

$$\int_{n}^{n+1} f(t) dt \le f(n) \le \int_{n-1}^{n} f(t) dt$$

Savoir-faire : interpréter et illustrer cet encadrement comme aire de régions du plan

Théorème.— Comparaison série-intégrale —. Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction continue par morceaux, décroissante et positive. Alors

La série
$$\sum f(n)$$
 converge si et seulement si la suite $\left(\int_0^n f(t) dt\right)_{n \in \mathbb{N}}$ converge

Théorème.— Comparaison des séries à termes positifs —. Soit u, v des suites positives.

On suppose que $\forall n \in \mathbf{N}, \quad 0 \le u_n \le v_n$.

- si la série $\sum v_n$ converge alors $\sum u_n$ converge aussi et $\sum_{n=0}^{+\infty} u_n \leq \sum_{n=0}^{+\infty} v_n$
- si la série $\sum u_n$ diverge alors $\sum v_n$ diverge aussi.

Théorème.— Règles des équivalents — . Soit u, v des suites positives telles que $u_n \sim v_n$. Alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature, ie. $\sum u_n$ converge si et seulement si $\sum v_n$ converge.

■■■ Séries absolument convergentes

Définition : Soit $\sum u_n$ une série. On dit que $\sum u_n$ est absolument convergente si la série $\sum |u_n|$ est convergente.

Théorème.— Condition suffisante de convergence —. Soit $\sum u_n$ une série numérique.

Si $\sum u_n$ est absolument convergente alors $\sum u_n$ est convergente

Remarque: dans ce cas, $\left|\sum_{n=0}^{+\infty} u_n\right| \leq \sum_{n=0}^{+\infty} |u_n|$

■■ Séries de référence

Théorème.— Convergence des séries géométriques —. Soit $x \in \mathbb{R}$.

La série géométrique $\sum x^n$ est convergente si et seulement si |x|<1

En ce cas, elle est absolument convergente.

Corollaire.— Séries géométriques et dérivées —. Soit $x \in]-1,1[$.

- la série $\sum x^n$ est convergente et $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$.
- la série $\sum nx^{n-1}$ est convergente et $\sum_{n=1}^{+\infty} nx^{n-1} = \frac{1}{(1-x)^2}$.
- la série $\sum n(n-1)x^{n-2}$ est convergente et $\sum_{n=2}^{+\infty} n(n-1)x^{n-2} = \frac{2}{(1-x)^3}$.

Théorème.— Convergence des séries de Riemann —. Soit $\alpha \in \mathbf{R}$ un réel donné.

La série de Riemann $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha>1$

Corollaire*.— Comparaison à une série de Riemann : règle $n^{\alpha}u_n$ —. Soit $\sum u_n$ une série à termes positifs.

- ▶ S'il existe $\alpha > 1$ tel que $n^{\alpha}u_n \xrightarrow[n \to \infty]{} 0$, alors $\sum u_n$ converge.
- ▶ S'il existe $\alpha > 1$ tel que $n^{\alpha}u_n \xrightarrow[n \to \infty]{} \ell \in \mathbf{R}^{+\star}$, alors $\sum u_n$ converge.
- ▶ S'il existe $\alpha \le 1$ tel que $n^{\alpha}u_n \xrightarrow[n \to \infty]{} \ell \in \mathbb{R}^{+*}$, alors $\sum u_n$ diverge.
- ▶ S'il existe $\alpha \leq 1$ tel que $n^{\alpha}u_n \xrightarrow[n \to \infty]{} +\infty$, alors $\sum u_n$ diverge.